论文部分内容阅读
为提高支持向量机的模式分类性能,综合模糊支持向量机和球形支持向量机等方法,提出一种模糊最小包含球(FMEB)支持向量机,对于模式分类问题,通过引入模糊隶属度,寻找2个分别包含二类模式的同心最小包含球,使类间间隔最大化,同时二类模式类内分布最小化,从而增强泛化性和鲁棒性。实验结果证明FMEB的模式分类性能优于其他方法。