论文部分内容阅读
闪速熔炼过程中存在大量多元非线性因素,难以从统计学和机理上确立操作参数。为优化闪速炉的操作参数,建立了动态T-S递归模糊神经网络(DTRFNN)的软测量模型,推导了DTRFNN的权值学习算法。将其应用到某厂铜闪速熔炼过程中的参数软测量上,平均精确率达到97%,能为生产操作提供有益的指导。