论文部分内容阅读
通过对钨丝和灰口铸铁熔体组成的体系施加电磁场,在1573 K时,熔体中的碳原子与钨原子能够原位反应合成碳化钨颗粒。结果表明:当电磁场频率小于4 kHz,得到碳化钨颗粒与钨丝混杂增强灰口铸铁基复合材料;当电磁场频率达到4 kHz时,得到碳化钨颗粒增强灰口铸铁基复合材料。电磁场除了加速熔体中的质量传递外,还有助于在钨丝周围形成一系列的Fe-W-C三元微区,该微区中钨的浓度较高,利于改善原位合成WC颗粒的动力学条件。但是,WC颗粒的间隙类似于一个过滤器,降低了元素的扩散速度。复合材料较好的耐磨性归因于WC颗粒的较高硬度以及颗粒的弥散分布。
By applying an electromagnetic field to a system composed of a tungsten wire and a gray cast iron melt, at 1573 K, the carbon atoms in the melt and the tungsten atoms can react in situ to synthesize tungsten carbide particles. The results show that when the electromagnetic field frequency is less than 4 kHz, tungsten carbide particles and tungsten wires are mixed to enhance the gray cast iron matrix composites. When the electromagnetic field frequency reaches 4 kHz, the tungsten carbide particles reinforced gray cast iron matrix composites are obtained. In addition to accelerating the mass transfer in the melt, the electromagnetic field also helps to form a series of Fe-WC ternary domains around the tungsten wire. The high concentration of tungsten in the microtome contributes to improving the kinetics of in-situ synthesis of WC particles Learn conditions. However, the clearance of WC particles resembles a filter, reducing the rate of element diffusion. The better wear resistance of the composites is attributed to the higher hardness of the WC particles and the dispersion of the particles.