论文部分内容阅读
基于深度卷积神经网络的目标检测算法对硬件的计算性能要求很高,难以部署在一些嵌入式设备和移动终端中,而当前的一些轻量化分类算法没有针对目标检测任务的特点进行网络结构设计。针对这一问题,借鉴深度可分离卷积的思路,通过引入多尺度的特征融合模块,设计了一个针对目标检测任务的轻量化特征提取网络TinyNet,进而提高了轻量化特征提取网络对不同尺度目标的适应性。结合当前性能较好的YOLOv3目标检测框架,用TinyNet取代YOLOv3的特征提取网络,并利用轻量化模块进一步优化YOLOv3的检测子网络,得到一个