论文部分内容阅读
为了克服传统流型识别方法的特点,采用小波分解和RBF神经网络技术来实现气液两相流流型的智能识别。首先测量了水平管内气液两相流的差压波动信号,其次应用小波分解对流型的动态差压波动信号进行了分析并提取流型特征,最后将小波能量特征作为RBF神经网络的输入,从而实现对流型的智能识别。仿真结果表明:该方法能够较好地识别出4种流型,从而为流型的在线识别提供了一种定量的流型识别方法。