论文部分内容阅读
分子半导体组成的异质结构是染料敏化太阳能电池的主要部分,电荷转移效率的提高是太阳能转换效率的关键.在金属纳米粒子与染料分子和半导体TiO2组成的系统中,考虑半导体的晶格结构、电子波函数在晶格边界的反射及金属纳米粒子中的等离激元效应,应用密度矩阵理论研究在光激发分子作用下电荷从分子转移到半导体晶格的动力学过程,采用密度矩阵和波函数相结合的处理方案研究了分子半导体电荷转移过程中的等离激元效应.研究发现金属钠米粒子激发所产生的等离激元可以使电荷从分子到半导体的转移效率提高3个数量级,是提高电荷转移效率的有效手段,且密度矩阵理论与波函数相结合的方法使得计算分子与15 nm尺度的半导体纳米晶体间的电荷转移成为可能,理论分析了表面等离激元的增益作用对电荷转移的影响.
Heterogeneous structure of molecular semiconductors is the main part of dye-sensitized solar cells, charge transfer efficiency is the key to solar conversion efficiency.In the system composed of metal nanoparticles and dye molecules and semiconductor TiO2, consider the semiconductor lattice structure , The reflection of the electron wave function at the lattice boundary and the plasmon effect in the metal nanoparticle, the density matrix theory is used to study the kinetics of charge transfer from molecules to the semiconductor lattice under the action of photo-excited molecules. The density matrix and Wave function was used to study the plasmon effect in the process of charge transfer of semiconductors.It was found that the plasmons generated by the excitation of metallic sodium nanoparticles can increase the charge transfer efficiency from molecule to semiconductor by three orders of magnitude Is an effective way to improve the efficiency of charge transfer. The combination of density matrix theory and wave function makes possible the charge transfer between the calculated molecule and the semiconductor nanocrystal at 15 nm. Theoretical analysis of the gain effect of surface plasmon Effect on charge transfer.