论文部分内容阅读
研究了涉及导函数的整函数的惟一性, 主要证明了以下结果. 设 f(z) 和 g(z)为非常数整函数, n, k为满足n>2k+4的2个正整数. 若f(z)和g(z)的零点重数均至少为n, 且f(k)(z)和g(k)(z) CM分担1, 则或者f(z)=c1ecz, g(z)=c2e-cz, 其中c1, c2 和 c 为满足 (-1)kc1c2c2k= 1的常数; 或者f(z)≡g(z).