论文部分内容阅读
设p为素数,n为任意正整数,我们定义Smarandache原函数Sp(n)为最小的正整数k,使得pn|k!,即Sp(n)=m in{k:k∈N,pn|k!}。利用初等数论方法研究了方程Sp(1×2)+Sp(2×3)+…Sp(n(n+1))=Sp(n(n+1)(n+2)/3)的可解性,并给出了这个方程的所有正整数解。