论文部分内容阅读
单一特征已不能很好的描述作物病害典型特征,而生长环境参数(土壤温湿度、pH值、空气温湿度等)与病害密切相关,多结构数据学习向量化与特征最优组合能够有效提升病害诊断准确性。该研究以黄瓜白粉病、角斑病、炭疽病、菌核病4种病害50个样本为实例,融合结构化作物生长环境参数与非结构化图像特征,通过智能化物联网,对实时采集到的环境参数进行监测、分析,并将其与图像特征融合,构建多结构病害特征最优组合模型。试验结果表明,样本识别率在79.4%~93.6%,对比卷积神经网络图像识别识别率,卷积神经网络由于需要对病害图