论文部分内容阅读
目的基于决策树和人工神经网络方法,建立小儿肺炎痰热闭肺证诊断模型。方法以大样本、多中心小儿肺炎痰热闭肺证病例作为数据源,运用CRT、CHAID、QUEST、C5.0决策树和多层感知器(MLP)、径向基函数(RBF)的神经网络方法建立小儿肺炎痰热闭肺证诊断模型,并结合中医理论分析模型的诊断规则。结果采用CRT、CHAID、QUEST、C5.0算法决策树建立的小儿肺炎痰热闭肺证的诊断模型,准确率为83.1%、91.0%、89.5%、93.2%。其中采用C5.0算法的决策树模型优于前3种。采用MLP、RBF算法