论文部分内容阅读
针对铁道车辆走行部的滚动轴承故障特征,其故障信号通常被调制到高频,且还有大量噪声,提出了一种EMD(Em—piricalModeDecomposition)分解和基于LMS(1eastmeansquare)算法的自适应广义形态学滤波相结合的方法。先采用EMD分解得到高频信号,将低频干扰和噪声相分离;再使用LMS算法的形态学滤波和闭运算的方法进行形态解调。最后对其进行频谱分析,提取出故障特征。通过仿真实验和实例表明该方法能够有效的消除大量噪声和低频干扰,提取出滚动轴承故障特征。该方法计算速度快,易于实现,具