论文部分内容阅读
大数据分析是重要的科研和管理创新。基于对土壤质量和大数据理论框架的分析,我们建立了大数据的基础结构,包括耕地和耕地信息收集模块结构的国家土地质量数据核心组件。耕地构成信息包括了耕地的自然因素和社会经济因素,是一个耕地适宜性、生产潜力和土壤物理退化状态的宏观因素。核心组件信息的载体包括农田的核心元素:水、土壤、作物组成及其诊断属性。这些是农田生产力、生态健康和土壤化学退化状态的决定因素。我们还讨论了国家层面上的大数据农田质量监测方法。
Big data analytics are important scientific and managerial innovations. Based on an analysis of the theoretical framework of soil quality and big data, we built the infrastructure for big data, including the core components of the national land quality data structure of the cultivated land and cultivated land information collection module structure. Cultivated land composition information includes the natural and social-economic factors of cultivated land, which is a macroscopic factor of arable land suitability, production potential and soil physical degradation. The carrier of core component information includes the core elements of farmland: water, soil, crop composition and its diagnostic properties. These are the determinants of farmland productivity, ecological health and soil chemistry degradation. We also discussed the method of monitoring the quality of big data farmland at the national level.