对一道几何题的测试及分析

来源 :数学教学通讯 | 被引量 : 0次 | 上传用户:pailfj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
<正> 解题是数学教学的重要内容,而“听得懂、记得到、用不来、做不起”是当前数学教学中普遍存在的问题.因而有必要研究“专家”与“新手”解题的思维过程,弄清他们解题的各种差异,然后将“专家”的思维、专家的解题策略,教给学生,提高学生的解题能力.为此,我们做了以下尝试:
其他文献
(本刊讯)2019年12月3日,宝索企业交钥匙工程中的一台宝拓纸机,在位于哈萨克斯坦阿拉木图的Karinar Trading公司成功投产。该纸机为SF12-1100节能型真空圆网纸机,设计车速1,10
<正> 构造法在解决数学问题中有着广泛的应用.一般说来,利用具体问题的特殊性,为待解问题设计一个新的关系结构系统,即构造一个数学模型,通过对这个数学模型的研究去实现原问
<正> 著名数学教育家波利亚说:“掌握数学就意味着善于解题。”“中学数学教育首要的任务就是加强解题训练。”数学解题是中学数学教学活动中的一个重要组成部分和主要形式,
由北京大学、清华大学、复旦大学、南京大学、南开大学、西安交通大学、厦门大学、华东师范大学、北京师范大学、中山大学全国十所重点高校和上海《萌芽》杂志社联合举办的“
<正> “创新是一个民族的灵魂,是一个国家兴旺发达的不竭动力”,培养联想能力是培养创新人才的一个途径.因此引导学生联想,培养学生的创新意识是当前教育的首要任务,也是我们
<正> 本刊文[1]的例1为:求方程 x~2-2xsin((πx)/2)+1=0的一切实根.文中说,由于方程中的系数 sin((πx)/2)不是常数,因此不能用判别式求解.我们指出,对于形如f(x)&#183;x~2+g
高校是现代化建设人才培养的摇篮,除了塑造高素质技能外,还应该对学生进行人文关怀和心理疏导。近几年大学校园发生的一些案件,使大学生的心理承受能力和耐压能力越来越受到
<正> 当 n 个正变数之和为定值时,求它们之积的最大值的问题,常用著名的均值不等式(I)解.(x_1+x_2+……+x_n)/n≥(其中x_i(i=1,2,…,n)是正数,当且仅当 x_1=x_2=…=x_n 时等
掺氮超纳米金刚石(N-UNCD)薄膜不仅具备传统金刚石优异的物化性能,而且显现出纳米材料和N型半导体的一些特殊效应,应用前景广阔。N-UNCD的结构对其宏观性能影响巨大,深入研究