论文部分内容阅读
本文研究了高阶线性微分方程f(k)+(Ak-1(z)epk-1(z)+Dk-1(z))f(k-1)+…+(A0(z)ep0(z)D0(z))f=0和f(k)+(Ak-1(z)epk-1(z)+Dk-1(z))f(k-1)+…+(A0(z)ep0(z)+D0(z))f=F(z)解的增长性问题,其中,pj(z)=a jzn+bj,1zn-1+…+bj,n,Aj(z)、Dj(z)和F(z)都是有限级整函数。针对pj(z)中aj(j=0,1,k-1)的幅角主值不全相等的情形,得到了方程解的增长级的精确估计。