论文部分内容阅读
针对传统非局部均值(NL-Means)滤波算法缺乏对人类视觉系统考虑的问题,提出一种基于改进非局部均值滤波算法框架的显著性区域检测算法.首先利用作为低层线索的颜色独特性生成初级显著图,然后利用对象性测度估计算法提取出对象候选集,再将对象性测度估计分数扩展到每个超像素区域,生成高层线索的前景先验和背景先验显著图,最后将3个显著图进行多尺度融合并作为改进滤波算法的对象级线索,经滤波得到最终显著图.在基准数据集MSRA-1000和ECSSD上,与目前流行的检测算法进行了主观定性和客观定量比较,实验结果表明