论文部分内容阅读
提出了基于自组织特征映射网络(SOM)的纹理分类方法。采用了适合纹理分析的纹理谱(TS)的概念,并在分类过程中引入了纹理谱特征向量,纹理谱向量是TS经过降维处理得到的.该特征向量反映了空间模式的纹理特征.在学习(训练)与分类识别中,采用了神经元网络模型.与TS相对应的特征向量重复地送入SOM网络的输入端,网络的权向量则逐渐地将样本值聚类到各自的样本中心.计算机模拟实验表明,作者提出的纹理分类方案十分有效而且实用.本方案计算量小,学习周斯短,识别率高.本文最后给出了实验结果及分析.