论文部分内容阅读
针对电容层析成像技术的图像重建问题,提出了基于数据驱动的卷积神经网络图像重建方法。根据气固两相流的流型特点,通过数值模拟的方法随机生成了60000组介质分布图像,并利用有限元法计算了与之对应的电容向量,从而建立了一个"电容向量-介质分布"数据集;然后根据电容层析成像图像重建特点建立了卷积神经网络模型,对数据集中的训练集进行学习和训练,并利用测试集对训练结果进行了验证与评价。在此基础上,对获得的ECT图像重建卷积神经网络模型进行了静态实验和流化床测试实验研究。模拟和实验结果表明:所建立的卷积神经网络能