New approach to training support vector machine

来源 :Journal of Systems Engineering and Electronics | 被引量 : 0次 | 上传用户:gzc123123123
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Support vector machine has become an increasingly popular tool for machine learning tasks involving classification, regression or novelty detection. Training a support vector machine requires the solution of a very large quadratic programming problem. Traditional optimization methods cannot be directly applied due to memory restrictions. Up to now, several approaches exist for circumventing the above shortcomings and work well. Another learning algorithm, particle swarm optimization, for training SVM is introduted. The method is tested on UCI datasets. Support vector machine has become an increasingly popular tool for machine learning tasks involving classification, regression or novelty detection. Training a support vector machine require the solution of a very large quadratic programming problem. another learning algorithm, particle swarm optimization, for training SVM is introduced. The method is tested on UCI datasets.
其他文献
如何才能提高聋校高中语文教学的效率,这一问题一直困扰着很多聋校高中语文教师。目前聋校高中语文教学存在着很多问题,最主要的问题就是聋校高中语文教学与聋生实际需求脱节,其
随着新课改的深入实施,学校管理的重心逐步从常规管理的适应性调整转移到学校可持续发展和特色建设上。无论在哪个层次,教师队伍建设是管理者永远的话题。而开展校本研究是促进
语文课程改革的深入推进,语文教师的快速成长,语文教学质量的大幅度提升,主要得力于语文教研组的建设,这一观点毋庸置疑。然而,近年来,许多中学为了提升以升学率为主要“标志”的办
期刊