论文部分内容阅读
该文提出了一种类加权的双ν支持向量机,称为WDν-SVM。给出了求解WDν-SVM的KKT条件。理论分析表明,WDν-SVM中的参数v+和v_具有与ν-SVM类似的物理含义,分别对应于加权正类和负类中边界向量比例的上界和支持向量比例的下界,从而有利于分类识别中的参数取值。此外,通过调整类加权可提高WDν-SVM对小样本类的分类性能。实验结果表明WDν-SVM既保持了ν-SVM的优势,即WDν-SVM的参数具有明确的物理含义,又解决了ν-SVM由于样本类不平衡导致的分类错误偏差问题。