论文部分内容阅读
社会网络特征千差万别,演化规律错综复杂.合理地分析网络演化规律,及时地检测网络事件具有重大意义.基于链路预测的社会网络事件检测方法利用有限的网络拓扑信息,能够有效地发现网络演化的异常波动,准确地检测网络事件.然而,现有方法大多受到链路预测的宏观评价指标的限制,忽略了不同节点演化波动的差异,用相同的相似性计算指标去描述所有节点的演化波动,不利于提升事件检测的表现.为了进一步提升事件检测的精确性和敏感性,提出一种面向节点演化波动的社会网络事件检测方法NodeED,由节点相似性计算指标判定算法SimJudge和