论文部分内容阅读
为了在工程项目实施前准确地预测出工期风险的大小,在介绍BP神经网络、遗传算法、主成分分析等理论的基础上,针对现有预测模型的缺点以及BP神经网络自身缺陷,采用主成分分析法对样本数据进行降维处理,并利用遗传算法对BP神经网络的初始权值阂值进行优化,提出了基于PCA—GA-BP的工程项目工期风险预测模型。将以往工程风险数据作为学习样本,训练并构建模型对待建工程项目工期风险进行预测。实例证明该模型有效、可靠,对指导实际工程具有重要意义。