【摘 要】
:
目的 显微光学成像有景深小和易模糊等缺陷,很难根据几何光学中的点扩散函数准确评估图像的模糊程度,进而很难计算景物深度.同时,传统的使用边缘检测算子衡量图像模糊程度变化的方法缺少与景物深度之间的函数关系,影响深度计算的精度.为此,本文提出一种显微光学系统成像模糊程度与景物深度关系曲线的获取方法.方法 从显微光学系统中的光学传递特性出发,建立光学传递函数中的光程差、高频能量参数和景物深度之间的数学关系,并通过归一化和曲线拟合得到显微光学系统的成像模糊程度与景物深度之间的解析函数.结果 为了验证本文获取的图像模
【机 构】
:
东北大学计算机科学与工程学院, 沈阳 110004
论文部分内容阅读
目的 显微光学成像有景深小和易模糊等缺陷,很难根据几何光学中的点扩散函数准确评估图像的模糊程度,进而很难计算景物深度.同时,传统的使用边缘检测算子衡量图像模糊程度变化的方法缺少与景物深度之间的函数关系,影响深度计算的精度.为此,本文提出一种显微光学系统成像模糊程度与景物深度关系曲线的获取方法.方法 从显微光学系统中的光学传递特性出发,建立光学传递函数中的光程差、高频能量参数和景物深度之间的数学关系,并通过归一化和曲线拟合得到显微光学系统的成像模糊程度与景物深度之间的解析函数.结果 为了验证本文获取的图像模糊程度和景物深度之间的函数关系,首先使用纳米方形栅格的模糊图像进行深度计算,实验测得的深度平均误差为0.008μm,即相对误差为0.8%,与通过清晰图像和模糊图像的逐个像素亮度值比较,根据最小二乘方法搜索两幅图像的亮度差最小时求得深度的方法相比,精度提高了约73%.然后基于深度测量结果进行模糊栅格图像的清晰重构,重构后的图像在平均梯度和拉普拉斯值两个方面都明显提高,且相对于传统基于高斯点扩散函数清晰重构方法,本文方法的重构精度更高,稳定性更强;最后通过多种不同形状和亮度特性的栅格模糊图像的深度计算,证明了本文的模糊程度—深度变化曲线对不同景物的通用性.结论 本文建立的函数关系能够更加直观地反映系统参数对光学模糊成像过程的影响.使用高频能量参数表征图像的模糊特性,既可以准确测量图像模糊程度,也与景物深度具有直接的函数关系.固定光学系统参数后,建立的归一化系统成像模糊程度与景物深度之间的函数关系不会受到景物图像的纹理、亮度等特性差异的影响,鲁棒性强、更方便、更省时.
其他文献
目的 深度伪造是新兴的一种使用深度学习手段对图像和视频进行篡改的技术,其中针对人脸视频进行的篡改对社会和个人有着巨大的威胁.目前,利用时序或多帧信息的检测方法仍处于初级研究阶段,同时现有工作往往忽视了从视频中提取帧的方式对检测的意义和效率的问题.针对人脸交换篡改视频提出了一个在多个关键帧中进行帧上特征提取与帧间交互的高效检测框架.方法 从视频流直接提取一定数量的关键帧,避免了帧间解码的过程;使用卷积神经网络将样本中单帧人脸图像映射到统一的特征空间;利用多层基于自注意力机制的编码单元与线性和非线性的变换,使
目的 结构化重建,即从离散点云或者原始三角网格中提取几何平面并将其拼接成紧凑的参数化3维模型,一直是计算机图形学领域中极具挑战性的问题.现有方法通常面临着两个挑战.一是传统的形状检测方法通常只考虑物体的局部特征,无法保证整体结果的准确性.二是现有的形状拼接算法往往受限于计算复杂度,从而只能处理由一百多个几何平面组成的物体,极大地限制了算法的应用场景.针对这些问题,提出了一种快速、鲁棒的结构化重建算法以自动地生成轻量的多边形网格.方法 提出了一种多源区域增长算法,全局地从原始3维数据中提取特征平面.该策略保
本文通过研究pH值、微波时间及微波功率等因素对莜麦麸 β-葡聚糖提取率的影响.根据单因素和正交试验,确定了提取的最佳条件为pH值11,微波功率600 W,微波时间180 s,提取温度75℃,在此工艺下β-葡聚糖提取率为3.472%.
本文建立了高效液相色谱法测定糕点中富马酸二甲酯的方法,试样经氨水甲醇溶液超声提取,滤纸过滤,过有机相滤膜,采用C18色谱柱分离,二极管阵列检测器检测.结果 表明,富马酸二甲酯在1.0~30.0μg/mL线性关系良好,相关系数为0.999607,方法检出限为0.05 mg/kg,加标回收率为92.5% ~98.4%,RSD为0.37%~1.60%,满足糕点中富马酸二甲酯准确、快速、高通量的检测需求.
目的 物联网(internet of things,IoT)感知层获取数据时存在资源受限的约束,同时数据常常遭受泄露和非法篡改.数据一旦遭到破坏,将对接收者造成很大的影响,甚至可能会比没有收到数据更加严重.针对IoT数据获取面临的能耗和安全问题,提出一种基于半张量积压缩感知的可验证图像加密方法.方法 首先采用级联混沌系统生成测量矩阵和验证矩阵,测量矩阵以半张量积压缩感知的方式进行采样得到观测值矩阵.利用Arnold置乱观测值矩阵得到最终密文信号,与此同时由验证矩阵生成消息验证码一同在公共信道传输,将由级联
场景的深度估计问题是计算机视觉领域中的经典问题之一,也是3维重建和图像合成等应用中的一个重要环节.基于深度学习的单目深度估计技术高速发展,各种网络结构相继提出.本文对基于深度学习的单目深度估计技术最新进展进行了综述,回顾了基于监督学习和基于无监督学习方法的发展历程.重点关注单目深度估计的优化思路及其在深度学习网络结构中的表现,将监督学习方法分为多尺度特征融合的方法、结合条件随机场(conditional random field,CRF)的方法、基于序数关系的方法、结合多元图像信息的方法和其他方法等5类;
目的 针对多视图立体(multi-view stereo,MVS)重建效果整体性不理想的问题,本文对MVS 3D重建中的特征提取模块和代价体正则化模块进行研究,提出一种基于注意力机制的端到端深度学习架构.方法 首先从输入的源图像和参考图像中提取深度特征,在每一级特征提取模块中均加入注意力层,以捕获深度推理任务的远程依赖关系;然后通过可微分单应性变换构建参考视锥的特征量,并构建代价体;最后利用多层U-Net体系结构正则化代价体,并通过回归结合参考图像边缘信息生成最终的细化深度图.结果 在DTU(Techni
目的:利用分光光度计法测定某市部分超市、小作坊销售的面制品中铝含量,为食品安全监管部门提供科学依据.方法:参考《食品安全国家标准食品添加剂使用标准》(GB 2760—2014)方法,样品经消化处理后,以铬天青S为显色剂,在乙二胺-盐酸缓冲溶液中进行显色反应,结合紫外分光光度计准确测定铝的含量.结果:本法线性良好,线性范围0.086~0.658μg/mL,相关系数达0.9988,回收率为96.9%~109.8%,相对标准偏差为0.6885%、0.9099%.实际检测样品中,有8份样品检出铝含量超标,其含量在
采用气相色谱-串联质谱法测定豇豆中倍硫磷残留量,依据《测量不确定度评定与表示》(JJF 10591.1—2012)评价其测量不确定度.结果 表明,在95% 置信概率下,豇豆中倍硫磷残留量的测定结果可表示为(0.141±0.013)mg/kg,k=2;其中,测量重复性对倍硫磷不确定度的评定影响最高.
目的 文档水印技术是一种用以解决文档泄密溯源的信息隐藏技术.传统的基于字库的文档水印方案需要手动生成字库,极大地影响了水印的使用效率.为此本文设计了一种基于自动生成字库的鲁棒文档水印方案.方法 该方法由一个端到端的编码—解码器结构的自动字库生成网络、一个字符筛选嵌入端和一个神经网络提取端组成,可自动完成变形字库的生成,而后进行水印的嵌入和提取.为了抵抗传输过程中可能存在的失真,在编码器和解码器之间加入可导噪声层用以模拟失真过程,使得水印模型获得对应的鲁棒性.结果 本文方法在含252个中文字符的真实文档中嵌