苯并咪唑并氮杂糖的结构修饰及其β-葡萄糖苷酶抑制活性

来源 :有机化学 | 被引量 : 0次 | 上传用户:fostervfr
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
源于D-核糖的苯并咪唑并氮杂糖1和2具有良好的β-葡萄糖糖苷酶抑制活性,对其苯环部位结构修饰,通过Mitsunobu反应合成了30个新型苯环不同位置上含单取代基的苯并咪唑并氮杂糖稠合三环衍生物11a~11g,12a~12g,13a~13h和14a~14h.测试了新合成化合物对β-葡萄糖糖苷酶(杏仁)的抑制活性.结果 显示,化合物13e和13f与14f的混合物对β-葡萄糖糖苷酶(杏仁)表现出优越的酶抑制活性,IC50值分别为0.49和0.25μmol/L,活性高于阳性对照米格列醇的酶抑制活性.构效分析表明,稠合三环氮杂糖中的六元氮杂糖环形式有利于此类苯并咪唑并氮杂糖三环衍生物的β-葡萄糖苷酶抑制活性.苯环上3\'或4\'位连有给电基团,如甲基、甲氧基等,将极大地促进化合物的酶抑制活性.
其他文献
金属氮宾的分子内碳氢键插入反应是合成氮杂环最有效的方法之一.以2-叠氮基-N,N-二苄基乙酰胺为底物,发展了无配体、无外加氧化剂条件下的铁催化分子内sp3-碳氢键胺化反应,以中等到良好的收率合成了一系列咪唑啉酮类化合物.“,”Transition-metal-nitrenoids intramolecular C—H insertion is one of the most effective methods to synthesize ni-trogen-containing heterocycles.
多肽合成在药物研发、疾病诊断、生物医学材料和高性能材料等高科技领域发挥着重要的作用,引起了化学家的广泛关注[1].酰胺键形成是多肽合成过程中的根本化学反应,同时其本身也是有机化学的一个重要研究领域[2].截止目前,已经有上百种酰胺键构建方法被开发出来[3],但是真正能够用于多肽合成的酰胺键形成方法非常有限,主要原因是这些方法在构建肽键时所需的光学纯手性原料难以获得.因此,多肽合成主要是通过缩合剂介导的天然α-氨基酸之间反复缩合来实现的.但传统多肽缩合剂经常会导致氨基酸羰基α-C位的手性中心发生外消旋化[4
期刊
合成了4\'-CF3修饰的尿苷亚磷酰胺单体,并通过固相合成将其引入了寡聚核苷酸链.分子动态模拟和NMR的结构研究,以及寡聚核苷酸的基本生化性质测定都表明4\'-CF3修饰将该核苷酸的核糖锁定在不常见的South构象.“,”The synthesis and structure of 4\'-CF3-uridine modified ribonucleotides are reported.Active 4\'-CF3-uridine (4\'-TfMU)phosphoramidite
含氟乙基化产物在生物医药和材料领域有着广泛的应用,合成含氟乙基的化合物有着重要意义.目前对三氟乙基化合物的合成有了相关报道,但是对于如何合成二氟乙基化产物却鲜有报道.通过氯二氟高价碘试剂和酰胺进行反应,选择性生成氮-氯二氟乙基化和氧-氯二氟乙基化产物,该反应的选择性通过溶剂选择即可调控,反应高效便捷实用.
发展了一种非金属催化下高效构筑多取代苯的新方法.以10 mol%的Cs2CO3为催化剂,一系列α-氰基-β-甲基烯基(杂)芳基酮可在极其温和的反应条件下与丁炔二酸酯发生[4+2]环加成/脱水芳构化苯增环反应,以62%~94%的收率生成1,2-二酯基-3-(杂)芳基-4-氰基苯衍生物.“,”A mild and transition-metal free method for rapid construction of benzene frameworks has been developed.Under
近年来,过渡金属催化的不对称碳氢键活化策略在手性化合物的高效合成中取得了巨大的进展[1-7],然而,不对称碳氢键官能化反应主要集中于单一手性中心的产生,同时构建具有多个手性中心的策略更加具有吸引力,也更具挑战性.迄今为止,利用不对称碳氢键活化策略同时构建双手性化合物常见于芳烃碳氢键活化后对烯烃的立体选择性插入,从而产生具有两个相邻手性中心的分子(Scheme 1a).或者是碳氢键官能化产生第一个手性中心进而诱导第二个手性中心产生(Scheme 1b).亦或者通过芳烃的去对称化的形成第一个手性中心,随后碳氢
期刊
Smiles重排是指分子内的亲核芳香取代反应,该类型反应最早可追溯到1894年Henrique的研究发现,并在20世纪30年代由Smiles教授发展并进行了系统的研究.此后,这类反应得到了蓬勃发展,在有机化学、材料化学、药物化学等领域中得到了广泛的应用.20世纪70年代,Speckamp等[1]报道了单电子转移Smiles重排过程,此后自由基型Smiles反应得到了一定程度的发展.这些新方法一定程度上弥补了传统离子型Smiles重排反应常见的底物局限性,但一般情况下需额外加入当量的氧化剂.近年来,镍催化的
期刊
烯基硅化合物是一类重要的原料,被广泛用于有机合成、高分子化学和材料科学领域[1].过渡金属催化炔烃的直接硅氢化反应是合成烯基硅化合物最高效和最原子经济性的方法之一.因此,该反应受到越来越广泛的关注[2].然而,炔烃与硅烷化合物的硅氢化反应过程中存在着化学选择性和区域选择性问题(图1).例如炔烃可以和硅烷反应生成半氢化的副产物,炔烃可以发生单次硅氢化生成烯基硅产物,也可能发生过度转化生成双硅化合物.同时,炔烃的硅氢化可以生成三种不同的加成产物,即马氏加成产物(α-烯基硅)和反马氏加成产物(β)-(E)-烯基
期刊
吡唑并嘧啶酮类化合物由于其与生物体内嘌呤的结构相似而具有多种活性,进而被广泛研究和应用.吡唑并嘧啶酮类化合物传统的合成方法存在一些不足,如需要酰化、环化两步完成等.报道了一种以水为介质、氢氧化钠作用下的5-氨基-4-氰基吡唑和芳香醛一锅环合形成1H-吡唑并[3,4-d]嘧啶-4(5H)-酮的方法.该方法具有原料易得、操作简单、良好的底物耐受性等优点.
吲哚酮、喹啉酮等两类重要杂环骨架,广泛存在于具有重要生物活性的天然产物和药物分子中[1].开发其高效、高选择性的构建方法一直是合成化学领域中的研究热点[2].rn过渡金属催化含杂原子烯烃分子内环化/分子间交叉偶联反应是构建杂环骨架的重要策略之一[3].在该类反应中,金属物种与系链烯烃发生分子内迁移插入生成烷基金属物种,再与另一偶联子发生交叉偶联.尽管目前已取得了重要进展,但是如何抑制烷基金属物种的β-H消除途径仍面临挑战.
期刊