【摘 要】
:
Neuromodulation at high spatial resolution poses great significance in advancing fundamental knowledge in the field of neuroscience and offering novel clinical treatments. Here, we developed a tapered fiber optoacoustic emitter (TFOE) generating an ultras
【机 构】
:
Department of Chemistry,Boston University,580 Commonwealth Avenue,Boston,MA 02215,USA;Department of
论文部分内容阅读
Neuromodulation at high spatial resolution poses great significance in advancing fundamental knowledge in the field of neuroscience and offering novel clinical treatments. Here, we developed a tapered fiber optoacoustic emitter (TFOE) generating an ultrasound field with a high spatial precision of 39.6 μm, enabling optoacoustic activation of single neurons or subcellular structures, such as axons and dendrites. Temporally, a single acoustic pulse of sub-microsecond converted by the TFOE from a single laser pulse of 3 ns is shown as the shortest acoustic stimuli so far for successful neuron activation. The precise ultrasound generated by the TFOE enabled the integration of the optoacoustic stimulation with highly stable patch-clamp recording on single neurons. Direct measurements of the electrical response of single neurons to acoustic stimulation, which is difficult for conventional ultrasound stimulation, have been demonstrated. By coupling TFOE with ex vivo brain slice electrophysiology, we unveil cell-type-specific responses of excitatory and inhibitory neurons to acoustic stimulation. These results demonstrate that TFOE is a non-genetic single-cell and sub-cellular modulation technology, which could shed new insights into the mechanism of ultrasound neurostimulation.
其他文献
Nonlinear holography has recently emerged as a novel tool to reconstruct the encoded information at a new wavelength, which has important applications in optical display and optical encryption. However, this scheme still struggles with low conversion effi
A commentary on the article: Zhu et al.“1700 nm optical coherence microscopy enables minimally invasive, label-free, in vivo optical biopsy deep in the mouse brain.”Light: Science & Applications 10, 145 (2021).rnHigh-resolution optical imaging techniques
Alzheimer\'s disease (AD) is the most common cause of dementia, costing about 1%of the global economy. Failures of clinical trials targeting amyloid-βprotein (Aβ), a key trigger of AD, have been explained by drug inefficiency regardless of the mechanism
We propose the generation of 3D linear light bullets propagating in free space using a single passive nonlocal optical surface. The nonlocal nanophotonics can generate space–time coupling without any need for bulky pulse-shaping and spatial modulation tec
In vivo, minimally invasive microscopy in deep cortical and sub-cortical regions of the mouse brain has been challenging. To address this challenge, we present an in vivo high numerical aperture optical coherence microscopy (OCM) approach that fully utili
Speed and enhancement are the two most important metrics for anti-scattering light focusing by wavefront shaping (WS), which requires a spatial light modulator with a large number of modulation modes and a fast speed of response. Among the commercial modu
X-ray mirrors are widely used for synchrotron radiation, free-electron lasers, and astronomical telescopes. The short wavelength and grazing incidence impose strict limits on the permissible slope error. Advanced polishing techniques have already produced
Many polarisation techniques have been harnessed for decades in biological and clinical research, each based upon measurement of the vectorial properties of light or the vectorial transformations imposed on light by objects. Various advanced vector measur
Optical microcavities have widely been employed to enhance either the optical excitation or the photon emission processes for boosting light-matter interactions at the nanoscale. When both the excitation and emission processes are simultaneously facilitat
We review recent studies of cavity switching induced by the optical injection of free carriers in micropillar cavities containing quantum dots. Using the quantum dots as a broadband internal light source and a streak camera as detector, we track the reson