论文部分内容阅读
本文给出Lax定理在局部凸空间中的几个推广,特别地,我们获得Lax定理的如下推广:设X和Y为自反Frechet空间,其拓扑分别由半范序列q1≤q2≤…和半范序列p1≤P2≤…所给出.设A:Y→X′为连续线性算子,则存在连续线性算子G:Y′→X使满足:(Gg,Ay)=(g,y),g∈Y′,V∈Y当且仅当:对于n,存在cn>0,使sup{1(Ay,x)|:qn(x)≤1}≤cnpm.(y),y∈Y且A的值域在互X′中具拓扑补,这里,X′和Y′分别记X和Y的强对偶.