论文部分内容阅读
为解决农作物冠层热红外图像边缘灰度级分布不均且噪声较大,而传统图像分割方法难以实现其目标区域有效识别的难题,以苗期红小豆冠层热红外图像为研究对象,将模糊神经网络和仿射变换有机结合,提出了基于热红外图像处理技术的农作物冠层识别模型。首先利用五层线性归一化模糊神经网络的自适应特性,选取高斯隶属度函数,自动计算冠层可见光图像识别的推理规则,有效地分割了可见光图像中的冠层区域。通过分析3种分割指标和熵,定量评价可见光图像冠层分割质量。网络迭代38次时,误差精度为0.000 952,该算法平均有效识别率为96