论文部分内容阅读
采用阳极电沉积方法在Mn-Mo氧化物阳极基础上,通过向镀液中加入稀土Ce Cl3制备了Mn-Mo-Ce氧化物阳极材料,采用循环伏安、Tafel极化曲线和电化学阻抗谱等电化学方法测试了Mn-Mo-Ce氧化物阳极的电催化性能;采用加速寿命实验及对氧化物阳极表面形貌观察,研究了Mn-Mo-Ce氧化物阳极材料在海水介质中的稳定性能。结果表明:稀土Ce的掺杂在一定程度上细化了Mn-Mo-Ce氧化物的微观结构,镀层结合致密,表面均匀分布有细小胞状物,微裂纹细密且数量较多,使电极表面的活性点数量增多,增大了真实表面积,提高了Mn-Mo-Ce氧化物电极的电催化性能;Mn-Mo-Ce氧化物阳极电解过程以氧化物溶解及剥落为主要破坏形式,Mn-Mo-Ce氧化物电极在海水介质中具有较好的稳定性,加速电解寿命可达1595 h,比Mn-Mo氧化物阳极高约207 h。
The anode material of Mn-Mo-Ce oxide was prepared by the anode electrodeposition method on the Mn-Mo oxide anode by adding rare earth Ce Cl3 into the bath. The cyclic voltammetry, Tafel polarization curve and electrochemical impedance spectroscopy The electrocatalytic properties of Mn-Mo-Ce oxide anodes were tested by electrochemical methods such as accelerated life test and surface morphology of MnO2-Mn-Mo-Ce oxides. The stability of Mn-Mo-Ce oxide anode materials in seawater was studied performance. The results show that the doping of rare earth Ce can refine the microstructure of Mn-Mo-Ce oxide to a certain extent. The coating combines densely and uniformly distributed fine cells on the surface. The microcracks are fine and dense, The increase of the number of active sites increased the real surface area and improved the electrocatalytic performance of the Mn-Mo-Ce oxide electrode. In the Mn-Mo-Ce oxide anodization, oxide dissolution and spalling were the main forms of destruction. Mn-Mo -Ce oxide electrode has good stability in seawater medium, accelerated electrolysis life of up to 1595 h, about 207 h higher than Mn-Mo oxide anode.