论文部分内容阅读
1.利用奇函数和偶函数的定义 例1 判定函数 f(x)=1,当x是有理数时,0,当x是无理数时的奇偶性。 解 当x是有理数时,-x也是有理数。 ∴f(-x)=f(x)=1,当x是无理数时,-x也是无理数,∴f(-x)=f(x)=0,故对任意实数x恒有f(-x)=f(x)且不恒为零,所以该函数为偶函数。