ADC evaluation boards design and test framework for LCLS-Ⅱ precision receiver

来源 :Nuclear Science and Techniques | 被引量 : 0次 | 上传用户:joy197671599
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
In the low-level RF control field,ADC acquisition accuracy and noise set the boundary of our control ability,making it important to develop low-noise acquisition systems.From the design to test stage,all the noise terms should be understood and characterized.The specific need addressed here is the precision acquisition system for the second Linac Coherent Light Source(LCLS-Ⅱ),led by SLAC National Accelerator Laboratory.Test circuit boards for the LTC2174 and AD9268 ADCs are designed and fabricated by LBNL.An ADC test framework based on FPGA evaluation board to assess performance has been developed.The ADC test framework includes both DSP(Digital Signal Processing) firmware and processing software.It is useful for low-level RF control and other synchronization projects.Investigating the clock jitter between two channels give us an understanding of that noise source.Working with the test framework,the raw ADC data are transferred to a computer through a Gigabit Ethernet interface.Then short-term error signal can be calculated based on a sine wave fit.By changing low-pass filter bandwidth,relative long-term performance can also be obtained.Amplitude jitter and differential phase jitter are the key issues for ADCs.This paper will report the test results for LTC2174 and AD9268 chips.The integral amplitude jitter is smaller than 0.003%,and the integral phase noise is smaller than 0.0015°(measured at 47 MHz RF,100 MHz clock,bandwidth 1 Hz to 100 kHz) for both ADC chips. In the low-level RF control field, ADC acquisition accuracy and noise set the boundary of our control ability, making it important to develop low-noise acquisition systems. From the design to test stage, all the noise terms should be understood and characterized. The specific need addressed here is the precision acquisition system for the second Linac Coherent Light Source (LCLS-II), led by SLAC National Accelerator Laboratory. Test circuit boards for the LTC2174 and AD9268 ADCs are designed and fabricated by LBNL. An ADC test framework based on FPGA evaluation board to assess performance has been developed. The ADC test framework includes both DSP (Digital Signal Processing) firmware and processing software. It is useful for low-level RF control and other synchronization projects. Investigating the clock jitter between two channels give us an understanding of that noise source. Working with the test framework, the raw ADC data are transferred to a computer through a Gigabit Ethernet interface. short-term error signal can be calculated based on a sine wave fit. By changing low-pass filter bandwidth, relative long-term performance can also be obtained. Amplitude jitter and differential phase jitter are the key issues for ADCs. This Paper will report the test results for LTC2174 and AD9268 chips.The integral amplitude jitter is smaller than 0.003%, and the integral phase noise is smaller than 0.0015 ° (measured at 47 MHz RF, 100 MHz clock, bandwidth 1 Hz to 100 kHz) for both ADC chips.
其他文献
微博作为新媒体的典型代表之一,已经成为信息分享和获取的重要平台。它以简洁的语言风格和独特的传播优势,迅速受到高校学生的青睐。在新媒体时代,微博已经成为高校学生获取
该文应用双参数法针对不同问题构造了几个新的有限元,分析其经典收敛性及各向异性收敛性;也分析了几个著名元的各向异性收敛性,并进行了大量的数值试验.求解四阶椭圆奇异摄动
我们做老师了的都知道,在数学教学的过程中,讲解新的知识是最重要的.但是,为了让学生更好掌握新的知识,我们就必须要进行大量的练习.我认为数学课堂的“练习”是提高数学教学
当论域为无限集时,证明了如果方程A@X=b有解且b有不可约完全交既分解,则对方程A@X=b的每一个解至少存在一个大于等于它的极大解;进一步证明了如果方程A@X=B有解且B的每一个分
该文首先给出定义在弧连通集S∈R上的实值函数f:S→R是弧连通函数的定义,在此基础上给出相关广义弧连通的定义.此类新类型的函数是凸性的推广.它们满足确定的局部-全局极值性
以均方相合性为标准,研究连续时间下局部线性估计的均方相合性,首先介绍先前对非参数回归模型的研究成果,通过与NW估计和GM估计的比较分析,阐明局部线性估计的优点,然后在连
请下载后查看,本文暂不支持在线获取查看简介。 Please download to view, this article does not support online access to view profile.
期刊
由于几乎差集与密码学、编码理论和序列设计有密切联系,它引起了不少学者的关注.最早,Davis称一类特殊的可分差集(DDS)为几乎差集;而后,Ding等人为构造具有优的3级自相关函数
小组学习作为一种新的教学方式,现在的运用并不是十分成熟,所以容易出现学习低效的现象,因为小学生的自制力不强,所以有的学生会利用老师让小组进行交流时老唠嗑,这样就会让
在该文中,其商半群为逆半群的同余称为强同余.该文的目的是研究纯正半群上的强同余及其格.全文分为六节:第一节给出强同余的定义和若干等价条件,并指出纯正半群上的所有强同