论文部分内容阅读
相对于传统的“对信号进行特征提取+人工选择对数据敏感的特征值+预测模型”的滚动轴承寿命预测方法,深度信念网络(DBN)有显著的优势:DBN可以直接处理原始数据,让机器自动学习信号特征,从而免去了特征提取和选择的过程,提高了预测的智能性。但是传统的DBN采用固定学习率进行网络学习,不利于寻找最优结果;基于此,提出了一种改进的深度信念网络——全参数动态学习深度信念网络(GPDLDBN),并将其应用于滚动轴承寿命预测中。GPDLDBN预测模型由多层受限玻尔兹曼机(RBM)单元组成,采用自下而上的逐层无监督贪婪算