论文部分内容阅读
为探究国际大数据研究领域的热点问题及其演化路径,本文选取2004-2013年Web of Science科研文献平台SCI/SSCI数据库中收录的1148篇大数据(Big Data)相关主题的文献为样本展开分析。在利用SATI软件构建共词矩阵的基础上采用Ucinet的社会化网络分析功能得到研究热点分布的知识图谱,并借助SPSS的多维尺度分析进行了效果验证,之后根据分析结果将大数据研究的8个主题域归纳为5个研究热点主题群,最后利用Cite Space提取高被引率文献分析其演化路径,揭示出了国际大数据的发展趋势。
In order to explore the hot issues in the field of international big data research and its evolution path, this paper selects 1148 Big Data related topics from the SCI / SSCI database of Web of Science 2004 - 2013 to analyze the samples . Based on the use of SATI software to build a co-word matrix, Ucinet’s social network analysis function is used to obtain the knowledge map of the hot spot distribution and validate the results by SPSS multidimensional scaling analysis. Based on the analysis results, eight Thematic areas are grouped into five hot topics groups. Finally, Cite Space is used to extract highly cited documents and analyze its evolution path, revealing the development trend of international big data.