论文部分内容阅读
为了克服烟花爆炸搜索算法容易早熟的弱点,提高其求解性能,提出一种融合佳点集变异机制的动态搜索烟花爆炸算法。首先为了提高算法的求解精度,每一次迭代过程均针对当前最佳个体执行动态随机搜索,加强对当前最佳的局部搜索。另一方面,当种群的拥挤程度超越设定的阈值λ时,除保留10%的优秀个体外,其余个体基于佳点集机制进行重新初始化,帮助种群摆脱局部最优的约束。最后,在6个Benchmark函数上的实验表明,该算法能快速收敛、克服早熟,并且具有较佳的鲁棒性。