论文部分内容阅读
电主轴是数控机床中重要的部件之一,其性能的优劣直接影响机床工况和加工零件质量。对电主轴进行故障诊断能很大程度上提高数控机床的加工精度,并且能够有效地增加其可靠性和安全性。在一般诊断过程中,原始数据的高维特征量处理较为困难。为顺应实际应用中对电主轴故障诊断的精度要求,提出一种基于主成分分析(PCA)与K最近邻(KNN)的电主轴故障诊断方法。此方法利用PCA对原始非线性时间序列数据的特征向量进行降维,并选取其中主成分特征向量。将得到的主成分特征向量作为KNN的输入进行故障分类。最后将该方法的预测结果与决策树和