论文部分内容阅读
题目 设a0 为常数 ,且an =3n-1 - 2an-1 (n ∈N+ )(Ⅰ )证明对任意n ≥ 1,an =15[3n+ ( - 1) n-1 · 2 n] + ( - 1) n· 2 n·a0 ;(Ⅱ )假设对于任意n ≥ 1有an an-1 ,求a0 的取值范围试题是根据新教材数列一章中的一道习题设计的 ,情境新颖 ,背景公
The topic sets a0 as a constant, and an = 3n-1 - 2an-1 (n ∈ N+ )(I) proves that for any n ≥ 1, an = 15[3n+ ( - 1) n-1 · 2 n] + (- 1) n· 2 n·a0 (II) Assume that for any n ≥ 1 there is an an-1. The range of values for a0 is based on a problem in the new textbook series. The situation is novel. Background