【摘 要】
:
The aging of society has arrived, and is accompanied by an increase in the absolute numbers of patients with neurological disorders, such as Alzheimer\'s and Parkinson\'s diseases (Feigin et al., 2020). Such diseases, particularly Alzheimer\'s disea
【机 构】
:
Laboratory for Molecular Design of Pharmaceutics,Faculty of Pharmaceutical Sciences,Hokkaido Univers
论文部分内容阅读
The aging of society has arrived, and is accompanied by an increase in the absolute numbers of patients with neurological disorders, such as Alzheimer\'s and Parkinson\'s diseases (Feigin et al., 2020). Such diseases, particularly Alzheimer\'s disease and other forms of dementia, affect not only the patients themselves, but also the people around them, including family members and care givers. As a result, such neurological disorders are thought to carry a larger social burden compared to other diseases. The most critical point in the current situation is that there is no effective treatment despite the fact that the number of patients increase with the aging of the population. Gene therapy has great promise for the treatment of neurological disorders (Sun and Roy, 2021), but delivering therapeutic genes is a major impediment for the success of gene therapy.
其他文献
Lipid peroxidation-derived aldehydes, such as acrolein, the most reactive aldehyde, have emerged as key culprits in sustaining post-spinal cord injury (SCI) secondary pathologies leading to functional loss. Strong evidence suggests that mitochondrial alde
Macrophages are highly versatile and plastic immune cells that are localized in nearly all organs of the body and contribute to a plethora of physiological and pathological processes in situ.Beside their roles as major players in the“first line of defense
Previous studies have shown that vagus nerve stimulation can improve patients\' locomotor function. The stimulation of the auricular vagus nerve, which is the only superficial branch of the vagus nerve, may have similar effects to vagus nerve stimulatio
The concept of neural plasticity accounts for the now well clarified brain ability to react to internal and external stimuli by transforming its structure and function. The translation of whatever experience in specific electrical signals that run through
Morphometric changes in cortical thickness (CT), cortical surface area (CSA), and cortical volume (CV) can reflect pathological changes after acute mild traumatic brain injury (mTBI). Most previous studies focused on changes in CT, CSA, and CV in subacute
Hypothermia is an important protective strategy against global cerebral ischemia following cardiac arrest. However, the mechanisms of hypothermia underlying the changes in different regions and connections of the brain have not been fully elucidated. This
After central nervous system (CNS) injury, severed axons fail to regenerate and their disconnections to the original targets result in permanent functional deficits in patients (Mahar and Cavalli, 2018). Both the diminished intrinsic regenerative capacity
Retinal ganglion cells (RGCs) are the sole output neurons of the retina that project long axons and transmit visual information to the brain. The degeneration of RGCs leads to irreversible vision loss in a variety of pathological states, including excitot
Macrophages are immune cells of myeloid origin and are present in almost all tissues. They perform a wide variety of functions contributing to tissue development, homeostasis, pathogenesis, and repair (Wynn et al., 2013). Strikingly, macrophages residing
Glial cells play an important role in signal transduction, energy metabolism, extracellular ion homeostasis and neuroprotection of the central nervous system. However, few studies have explained the potential effects of exosomes from glial cells on centra