【摘 要】
:
Potassium-ions batteries (PIBs) are attracting increasing attention as up-and-coming youngster in large-scale grid-level energy storage benefiting from its low-cost and high energy density.Nevertheless,enough researches regarding indispensable cathode mat
【机 构】
:
Guangdong Provincial Engineering Technology Research Center for Low Carbon and Advanced Energy Mater
论文部分内容阅读
Potassium-ions batteries (PIBs) are attracting increasing attention as up-and-coming youngster in large-scale grid-level energy storage benefiting from its low-cost and high energy density.Nevertheless,enough researches regarding indispensable cathode materials for PIBs are badly absent.Herein,we syn-thesize K-deficient layered manganese-based oxides (P2-K0.21MnO2 and P3-K0.23MnO2) and investigate them as cathode of PIBs for the first time.As the newcomer of potassium-containing layered manganese-based oxides (KxMnO2) group,P2-K0.21MnO2 delivers high discharge capacity of 99.3 mAh g-1 and P3-K0.23MnO2 exhibits remarkable capacity retention rate of 75.5%.Besides,in-situ XRD and ex-situ XRD measurements reveal the reversible phase transition of P2-K0.21 MnO2 and P3-K0.23MnO2 with the potassium-ions extraction and reinsertion,respectively.This work contributes to a better under-standing for the potassium storage in K-deficient layered KxMnO2 (x ≤ 0.23),possessing an important basic scientific significance for the exploitation and application of layered KxMnO2 in PIBs.
其他文献
Pt-based catalysts are widely used in propane dehydrogenation reaction for the production of propylene.Suppressing irreversible deactivation caused by the sintering of Pt particles under harsh conditions and regeneration process is a significant challenge
Aqueous zinc-ion batteries (ZIBs) have attracted great attention as the candidates for large-scale energy storage system,recently,because of their low cost,environment-friendly,high safety,and high theoret-ical energy densities.Among the numerous cathode
Hole-transporting material (HTM) plays a paramount role in enhancing the photovltaic performance of perovskite solar cells (PSCs).Currently,the vast majority of these HTMs employed in PSCs are organic small molecules and polymers,yet the use of organic me
Sustainable transformation and efficient utilization of biomasses and their derived materials are environ-mentally as well as economically compliant strategies.Biomass seaweed-derived nitrogen self-doped porous carbon with tailored surface area and pore s
Electrocatalytic carbon dioxide reduction (CO2R) presents a promising route to establish zero-emission carbon cycle and store intermittent renewable energy into chemical fuels for steady energy supply.Methanol is an ideal energy carrier as alternative fue
The ever-increasing need for sustainable development requires advanced battery techniques beyond the current generation of lithium ion batteries.Among all candidates being explored,lithium-sulfur batteries are a very promising system to be commercialized
LiNixCoyMnzO2 (NCM,x + y + z =1) is one of the most promising cathode candidates for high energy den-sity lithium-ion batteries (LIBs).Due to the potential in enhancing energy density and cyclic life of LIBs,Ni-rich layered NCM (NCM,x ≥ 0.6) have garnered
Piezocatalytic materials have been widely used for catalytic hydrogen evolution and purification of organic contaminants.However,most studies focus on nano-size and/or polycrystalline catalysts,suffer-ing from aggregation and neutralization of internal pi
Silica nanosheets (SN) derived from natural vermiculite (Verm) were successfully incorporated into polyethersulfone-polyvinylpyrrolidone (PES-PVP) polymer to fabricate high-temperature proton exchange membranes (HT-PEMs).The content of SN filler was varie
The introduction of spinel phase to form the layered-spinel structure (LSS) is an effective way to improve the electrochemical performance of Li-and Mn-rich layered oxides (LMR).But is this structure universal for all LMR systems?In this work,different Mn