Using Statistical Learning Algorithms in Regional Landslide Susceptibility Zonation with Limited Lan

来源 :Journal of Mountain Science | 被引量 : 0次 | 上传用户:luohuanyan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Regional Landslide Susceptibility Zonation(LSZ) is always challenged by the available amount of field data, especially in southwestern China where large mountainous areas and limited field information coincide. Statistical learning algorithms are believed to be superior to traditional statistical algorithms for their data adaptability. The aim of the paper is to evaluate how statistical learning algorithms perform on regional LSZ with limited field data. The focus is on three statistical learning algorithms, Logistic Regression(LR), Artificial Neural Networks(ANN) and Support Vector Machine(SVM). Hanzhong city, a landslide prone area in southwestern China is taken as a study case. Nine environmental factors are selected as inputs. The accuracies of the resulting LSZ maps are evaluated through landslide density analysis(LDA), receiver operating characteristic(ROC) curves and Kappa index statistics. The dependence of the algorithm on the size of field samples is examined by varying the sizes of the training set. The SVM has proven to be the most accurate and the most stable algorithm at small training set sizes and on all known landslide sizes. The accuracy of SVM shows a steadilyincreasing trend and reaches a high level at a small size of the training set, while accuracies of LR and ANN algorithms show distinct fluctuations. The geomorphological interpretations confirm the strength of SVM on all landslide sizes. Our results show that the strengths of SVM in generalization capability and model robustness make it an appropriate and efficient tool for regional LSZ with limited landslide field samples. Regional learnings are believed to be superior to traditional statistical algorithms for their data adaptability. The Regional Landslide Susceptibility Zonation (LSZ) is always challenged by the available amount of field data, especially in southwestern China where large mountainous areas and limited field information coincide. aim of the paper is to evaluate how statistical learning algorithms perform on regional LSZ with limited field data. The focus is on three statistical learning algorithms, Logistic Regression (LR), Artificial Neural Networks (ANN) and Support Vector Machine (SVM). Hanzhong city, a landslide prone area in southwestern China is taken as a study case. Nine accuracies of the resulting LSZ maps are evaluated through landslide density analysis (LDA), receiver operating characteristic (ROC) curves and Kappa index statistics. The dependence of the algorithm on the size of field samples is examined by varying the s The accuracy of SVM shows a steadilyincreasing trend and reaches a high level at a small size of the training set, while accuracies of LR and ANN algorithms show distinct fluctuations. The geomorphological interpretations confirm the strength of SVM on all landslide sizes. Our results show that the strengths of SVM in generalization capability and model robustness make it an appropriate and efficient tool for regional LSZ with limited landslide field samples.
其他文献
作为一门重要的专业基础课,机械设计基础在机械专业中具有承上启下的作用,是实践性与应用性很强的专业基础课,也是训练并培养学生机械操作能力和综合设计能力的一门课程,主要
文章中运用了文献资料法、专家访谈等方法对山西工商学院体育俱乐部课程的建设和开展进行了研究.主要结论表明:体育俱乐部是以学生为主体,以健身为目标.在办学理念、师生体育
一个反对参战的美国参议员糊里糊涂地成了英国间谍手中的棋子,把美国拖进了欧洲战场。1941年冬天,苏联、英国在欧洲战场上正和德国法西斯进行殊死厮杀。远隔重洋的美国此时国
在当前的互联网时代,随着计算机技术的快速发展,计算机教学需实行必要的改革从而适应时代的要求,如何通过网络教学平台对当前的计算机教学进行改革是值得关注的问题,本文主要
9月26日至28日,由农业部与河南省政府联合主办的第十届全国东西合作经贸洽谈暨农产品加工业博览会在河南省驻马店市召开。国务院副总理回良玉向大会发来贺信指出,此次大会是
在英语学习的过程中,不可避免地会受到母语的影响,这就是语言学习中母语对目的语的负迁移。在英语写作中,大学生要认识到汉语负迁移的负面作用,充分认识两种语言在词汇、语法
现代社会是一个注重实践应用技能、强调思维逻辑性的时代,动手操作和真正参与对于学生学习和成长过程是必不可少的,需要教学参与者有技巧、方法保证教学有效落实,保证学生真
期刊
采用微机控制万能材料试验机,通过轴向压缩、侧向约束的实验方式,以不同水泥砂配比样品作为充填介质,分别研究了同配比和同隙宽条件下的非全充填裂隙的变形模量。实验结果表
摘 要:新课改下,各地中小学生英语语用能力的培养受到广泛重视,当然,这也成为许多中小学教育工作者所面临的巨大挑战。目前很多学生则是处于掌握了基本的英语知识概念,却在语用方面比较困难的状况。结合现状,对中小学生英语语用教学状况做出具体分析后给出一系列有效措施。   关键词:中小学生;英语;语用能力   中小学阶段是学生学习语言的重要时期,在此阶段学生会表现出对语言学习的热爱、好奇等,所以,在这个阶段
小学生的年龄较小,处于成长的最佳时期,在这个教育阶段,教师应该对学生的长远发展有一个基本的目标,并且要在教学的过程中逐步渗透,帮助小学生打下坚实的基础.本文主要针对核