论文部分内容阅读
KNFL算法是一种近年来在人脸识别领域得到广泛应用的算法,这种算法认为类中两点的连线也可以近似代表类的特征,把它应用于文本分类领域可以得到较好的分类效果,但是由于时间复杂度比较高,影响了其实用价值.本文提出了一种应用于文本分类的改进的KNFL算法,计算出类的中心点后再进行两次过滤,分别将离类中心点较远的特征点和特征线过滤掉,减少了训练集样本数目,在对分类精确度影响不大的情况下,改善了KNFL算法的分类效率,最后用实验验证了该算法的有效性.