论文部分内容阅读
研究癫痫脑部疾患的脑电分类识别问题,由于癫痫是大脑神经元异常和过度的超同步化放电所造成的临床现象,脑电图(EEG)是目前最常用的监测与诊断癫痫疾病的方法。由脑电图仪监测得到的脑电信号数量巨大,单凭人工的诊断十分耗时,且有可能因为主观因素而产生误判。为了提高对癫痫脑电信号的自动识别和诊断的准确性,提出了样本熵(SampEn)与AR模型特征提取以及自适应差分进化极限学习机(SaE-ELM)相结合的方法来达到识别癫痫脑电信号的目的。实验表明采用上述特征提取及分类算法可达到97%的分类准确度,验证了上述方法