论文部分内容阅读
提出了一个基于支持向量机的医学图像分类器.能提取形状和纹理特征作为分类算法的特征输入,进行计算机辅助诊断.提出了一种支持向量机新算法,解决了当两类中的样本数量差别较大时,支持向量机的分类能力将会下降的问题.实验表明,在小样本、两类样本数量严重不均衡的情况下,该算法有着较强的分类能力,可以极大地提高医学图像分类的效率和准确性.