论文部分内容阅读
针对传统纹理图像分割方法运行时间长,分割准确率较低,提出基于粒子群优化算法(PSO)优化支持向量机(SVM)的纹理图像分割方法。首先在自适应调整惯性权重λ的控制策略中加入PSO中的当前迭代次数和种群数,改进PSO的惯性权重λ的性能;接着运用PSO寻找最优惩罚系数C和高斯核函数中参数γ,然后运用SVM方法对训练样本综合训练建立最佳分类模型,并对纹理图像分割测试。结果表明:对比传统方法,该方法不仅缩短运行时间,分割准确率也得到了提高。同时,对比传统惯性权重对分割结果的影响,改进后的方法使得平均收敛代数减