论文部分内容阅读
在求解渗流问题的传统差分格式中 ,只有Crank Nicolson格式具有对时间t的二阶精度。本文在导数超收敛点概念的基础上 ,提出 1种求解渗流问题的三阶精度差分格式 ,并将其与显式差分格式叠加形成组合差分格式以改善格式的稳定、收敛条件。算例计算结果表明 ,该组合格式具有精度高、稳定收敛限制宽松、易于编程等优点。
In the traditional difference scheme for solving the seepage problem, only the Crank Nicolson scheme has the second-order accuracy for time t. Based on the concept of derivative superconvergence point, this paper proposes a third-order precision difference scheme to solve the seepage problem, and superposes it with the explicit difference scheme to form the combined difference scheme to improve the stability and convergence of the scheme. The calculation results of the example show that the combination format has the advantages of high precision, stable convergence limit, easy programming and so on.