论文部分内容阅读
针对现有的入侵检测方法在检测准确率和误报率方面存在的不足,提出了一种多通道自编码器深度学习的入侵检测方法。该方法分为无监督学习和有监督学习两个阶段:首先分别采用正常流量和攻击流量训练两个独立的自编码器,其重构的两个新特征向量与原始样本共同组成多通道特征向量表示;然后利用一维卷积神经网络(CNN)对多通道特征向量表示进行处理,学习通道之间可能的依赖关系,用于更好地区分正常流量和攻击流量之间的差异。该方法将无监督的多通道特征学习和有监督的跨通道特征依赖学习有机地结合起来,用于训练灵活有效的入侵检测模型,达到极