论文部分内容阅读
Objective:To investigate the repairing effect of low intensity pulsed ultrasound(LIPUS)on the Beagle canines periodontal bone defect.Methods:A total of 12 Beagle dogs with periodontal bone defect model were randomly divided into control group,LIPUS group,guided tissue regeneration(GTR)group and LIPUS+GTR group,with three in each.After completion of the models,no other proceeding was performed in control group;LIPUS group adopt direct exposure to radiation line LIPUS processing 1 week after modeling;GTR group adopted treatment with GTR,following the CTR standard operation reference;LIPUS+GTR group was treated with LIPUS joint GTR.Temperature change before treatment and histopathological change of periodontal tissue after repair was observed.Results:There was no significant difference in temperature changes of periodontal tissue between groups(P>0.05).The amount and maturity of LIPUS+GTR group were superior to other groups;new cementum,dental periodontal bones of GTR group were superior to the control group but less than LIPUS group;new collagen and maturity of the control group is not high relatively.Conclusions:LIPUS can accelerate the calcium salt deposition and new bone maturation,thus it can serve as promoting periodontal tissue repair,and shortening the periodontal tissue repair time.
Objective: To investigate the repairing effect of low intensity pulsed ultrasound (LIPUS) on the Beagle canines periodontal bone defect. Methods: A total of 12 Beagle dogs with periodontal bone defect model were randomly divided into control group, LIPUS group, guided tissue regeneration GTR) group and LIPUS + GTR group, with three in each. After completion of the models, no other proceeding was performed in control group; LIPUS group adopt direct exposure to radiation line LIPUS processing 1 week after modeling; GTR group adopted treatment with GTR , the following CTR standard operation reference; LIPUS + GTR group was treated with LIPUS joint GTR. Temperature change before treatment and histopathological change of periodontal tissue after repair was observed. Results: There was no significant difference in temperature changes of periodontal tissue between groups ( P> 0.05). The amount and maturity of LIPUS + GTR group were superior to other groups; new cementum, dental periodontal bones of GTR group were superior to the control group but less than LIPUS group; new collagen and maturity of the control group is not high relatively. CONCLUSION: LIPUS can accelerate the calcium salt deposition and new bone maturation, thus it can serve as promoting periodontal tissue repair, and shortening the periodontal tissue repair time.