论文部分内容阅读
提出一种基于Alopex的进化算法.该算法在迭代过程中从种群中随机选择两个个体,通过计算两个个体自变量和目标函数值的变化情况确定算法进一步搜索方向的概率,逐步迭代最终收敛到全局最优.该算法具备基本进化算法和Alopex算法的优点,在一定程度上具有梯度下降法和模拟退火算法的优点.通过基准函数的测试和反应动力学参数估计的应用表明,该算法的全局搜索能力有了显著提高.特别是对多峰函数能够有效避免早熟收敛问题.