论文部分内容阅读
<正> J.Namazi在文[1]中证明:如果对某个1<q≤∞有Ω∈L~q(S~n-1),且b∈L~∞(0,+∞),则由(1)定义的算子T是L~p(R~n)上有界算子,1<P<∞,n≥2.本文证明上述结论中关于b的有界性条件可以放宽.对于上述1<q≤∞,设1<q_0<2/(1+1/q)及1/p_0+1/q_0=1.我们对b施加下述三个条件:(A_1)存在常数η_0∈(0,1/p_0)及常数C(η_0)使得