论文部分内容阅读
传统遥感图像目标检测方法的时间复杂度高且精准率低,如何快速准确地检测遥感图像中的特定目标成为当前的研究热点。为解决这一问题,文中在YOLO-V2目标检测算法的基础上进行改进,减少了卷积层数与维度,并结合特征金字塔思想,增加了检测尺度,达到了提高检测精度的目的。同时给出了一种基于深度学习的遥感图像目标检测算法的通用处理框架,解决了无法直接处理大幅遥感图像的问题。在DOTA数据集上进行对比实验,结果表明改进YOLO-V2算法在15个类别上的精准率和召回率均优于YOLO-V2算法,mAP值提高了0.12。