论文部分内容阅读
分析了柴油机气缸盖系统激励和响应信号的非线性特性,阐述了基于BP神经网络的柴油机气缸压力识别方法.对测试的振动响应信号进行时域统计平均和低通滤波后,训练BP神经网络,利用自适应梯度下降算法,自适应调节学习速率,提高网络精度,识别柴油机气缸压力.结果表明,恢复出来的缸内压力信号和实测信号十分接近,该方法对柴油机的实时在线控制、监测和故障诊断有重要的应用价值.