论文部分内容阅读
Tbe elongating of cable-stayed bridge brings a series of aerodynamic problems. First of all, geometric nonlin-ear effect of extreme long cable is much more significant for cable-stayed bridge spanning over one thousand meters. Lat-eral static wind load will generate additional displacement of long cables, which causes the decrease of supporting rigidi-ty of the whole bridge and the change of dynamic properties. Wind load, being the controlling load in the design of ca-hie-stayed bridge, is a critical problem and needs to be solved. Meanwhile, research on suitable system between pylon and deck indicates fixed-fixed connection system is an effective way for improvement performance of cable-stayed bridges under longitudinal wind load. In order to obtain aerodynamic parameters of cable-stayed bridge spanning over one thou-sand meters, identification method for flutter derivatives of full bridge aero-elastic model is developed in this paper. Furthermore, vortex induced vibration and Reynolds number effect are detailed discussed.