【摘 要】
:
为了提高网络流量预测精度,利用相空间重构和预测模型参数间的相互联系,提出一种遗传优化最小二乘支持向量机的网络流量预测方法。首先将相空间重构和最小二乘支持向量机参数
【机 构】
:
湖南城市学院信息科学与工程学院,中南大学软件学院
【基金项目】
:
国家自然科学基金(61073186)资助
论文部分内容阅读
为了提高网络流量预测精度,利用相空间重构和预测模型参数间的相互联系,提出一种遗传优化最小二乘支持向量机的网络流量预测方法。首先将相空间重构和最小二乘支持向量机参数作为遗传算法的个体,将模型预测精度作为个体适应度函数,然后通过遗传操作获得模型全局最优参数,最后通过网络流量仿真实验进行性能测试。结果表明,相对于传统预测方法,遗传优化最小二乘支持向量机提高了网络流量的预测精度,为网络流量预测提供了一种新的研究思路。
其他文献
针对复杂场景下的目标跟踪问题,提出了一种改进的粒子滤波目标跟踪方法。利用背景加权后的联合直方图描述目标灰度和梯度特征信息,在粒子滤波算法的框架下,设计了一种自适应特征融合观测模型来适应场景的不断变化;同时针对传统粒子滤波算法存在的粒子退化问题,提出了一种基于聚类核函数平滑采样的方法。理论仿真和实际场景的实验结果表明,该算法适应性更强,精度更高,能有效跟踪复杂场景下的运动目标。
隐变量是观察不到或虚拟的变量,直接利用数据驱动的学习方法难以有效地发现隐变量,因而需要结合概率图结构分析的方法。针对基于结构分析的隐变量发现方法中难以确定隐变量个
利用双线性对技术,依据Boneh等人提出的分级的基于身份加密方案,设计了一个在标准模型下分级的基于身份的签名方案。方案中签名的大小是一个常量,且与签名者所在的层数无关。
入侵检测系统处理的数据具有数据量大、特征维数高等特点,会降低检测算法的处理速度和检测效率。为了提高入侵检测系统的检测速度和准确率,将特征选择应用到入侵检测系统中。
针对水下传感器网络的现实需求,构建了水下传感器网络的应用场景,提出了高密度水下三维传感器网络的全新概念。结合水下传感器网络的应用,基于陆上传感器网络的体系结构,设计了水